dr.ir. S. Vollebregt

Associate Professor
Electronic Components, Technology and Materials (ECTM), Department of Microelectronics

Expertise: Graphene, carbon nanotubes, sensors, nanoparticles, wide bandgap semiconductors

Themes: Advanced sensor materials, MEMS Technology, Micro/Nano System Integration and Reliability

Biography

Sten Vollebregt (IEEE Senior Member) received his B.Sc. ('06) and M.Sc. ('09), both cum laude, in Electrical Engineering from Delft University of Technology. For his master's thesis, he investigated the growth of carbon nanotubes at NanoLab, Newton, MA, USA and AIXTRON, Cambridge, UK. In 2014, he completed his Ph.D. thesis in the Microelectronics Department of the Delft University of Technology on the low-temperature high-density growth of carbon nanotubes for application as vertical interconnects in 3D monolithic integrated circuits.

After obtaining his Ph.D., he held a post-doc position on the wafer-scale integration of graphene for sensing applications with the faculty of Mechanical Engineering and several industrial partners. During this research, he developed a unique transfer-free wafer-scale CVD graphene process.

Since Oct. 2017, he has been a professor in the Laboratory of Electronic Components, Technology and Materials of the Delft University of Technology. His research focuses on integrating emerging electronic materials into semiconductor technology for sensing applications. His research interests are (carbon-based) nanomaterials, 3D monolithic integration, wide-bandgap semiconductors, and (harsh) environmental sensors.

Dr. Vollebregt is editor of the journal of Micro and Nano Engineering, was guest editor at MDPI Materials, and has served as a TPC member for the IEEE MEMS conference. In 2022, he received the Micro and Nano Engineering (Elsevier) Young Investigator Award for outstanding contributions to reproducible wafer-scale microfabrication with carbon-based materials. He has co-authored over 70 journal publications, 4 book chapters, and holds 3 patents.

ET4icp IC technology lab

Hands-on experience on process simulations, fabrication in the EKL cleanroom and measurement on the fabricated devices

Education history

EE2L11 EPO-3: Design a Chip

(not running) Structural hierarchical design of a VLSI chip, implemented using Sea-of-Gates

EE3365TU Basics of Microfabrication

(not running)

Reliable POwerDown for Industrial Drives

The pioneering EU research project R-PODID started on the 1st of September 2023. This KDT JU co-funded project aims to develop an automated, cloudless, short-term fault-prediction for electric drives, power modules, and power devices, that can be integrated into power converters.

AGRARSENSE

Odour Based Selective Recognition of Veterinary Diseases

Terahertz Astronomy with Novel DiElectric Materials

Projects history

Intelligent Reliability 4.0

Graphene Flagship core 3: Transferless graphene in sensing applications

Power2Power

European research project Power2Power for more efficient power semiconductors

Monolithically integrated SiC sun sensor for Space

Wafer-scale fabrication of graphene for sensing applications

Carbon nanotube and atomic layer based solid-state supercapacitors

Carbon nanotubes as vertical interconnect in 3D integrated circuits

  1. A Fully Integrated Sequential Synchronized Switch Harvesting on Capacitors Rectifier Based on Split-Electrode for Piezoelectric Energy Harvesting
    Xinling Yue; Jiarui Mo; Zhiyuan Chen; Sten Vollebregt; Guoqi Zhang; Sijun Du;
    IEEE Transactions on Power Electronics,
    Volume 39, Issue 6, pp. 7643-7653, 2024. DOI: 10.1109/TPEL.2024.3369728

  2. Measuring residual stresses in individual on-chip interconnects using synchrotron nanodiffraction
    Yaqian Zhang; Leiming Du; Olof Bäcke; Sebastian Kalbfleisch; Guoqi Zhang; Sten Vollebregt; Magnus Hörnqvist Colliander;
    Applied Physics Letters,
    Volume 124, pp. 083501-1-6, 2024. DOI: 10.1063/5.0192672

  3. Surface modification of multilayer graphene neural electrodes by local printing of platinum nanoparticles using spark ablation
    Nasim Bakhshaee Babaroud; Samantha J. Rice; Maria Camarena Perez; Wouter A. Serdijn; Sten Vollebregt; Vasiliki Giagka;
    Nanoscale,
    Volume 16, pp. 3549-3559, 2024. DOI: 10.1039/D3NR05523J

  4. Highly-sensitive wafer-scale transfer-free graphene MEMS condenser microphones
    Roberto Pezone; Sebastian Anzinger; Gabriele Baglioni; Hutomo Suryo Wasisto; Lina Sarro; Peter Steeneken; Sten Vollebregt;
    Microsystems & Nanoengineering,
    Volume 10, Issue 27, pp. 1-9, 2024. DOI: 10.1038/s41378-024-00656-x

  5. Effect of air-loading on the performance limits of graphene microphones
    R. Pezone; G. Baglioni; C. Van Ruiten; S. Anzinger; H. S. Wasisto; P. M. Sarro; P. G. Steeneken; S. Vollebregt;
    Applied Physics Letters,
    Volume 124, Issue 12, 2024. DOI: 10.1063/5.0191939

  6. A high aspect ratio surface micromachined accelerometer based on a SiC-CNT composite material
    Jiarui Mo; Shreyas Shankar; Roberto Pezone; Guoqi Zhang; Sten Vollebregt;
    Microsystems & Nanoengineering,
    Volume 10, Issue 42, 2024. DOI: 10.1038/s41378-024-00672-x

  7. An Analog to Digital Converter in a SiC CMOS Technology for High-temperature Applications
    Jiarui Mo; Yunfan Niu; Alexander May; Mathias Rommel; Chiara Rossi; Joost Romijn; Guoqi Zhang; Sten Vollebregt;
    Applied Physics Letters,
    Volume 124, Issue 15, 2024. DOI: 10.1063/5.0195013

  8. Origin of the mm-submm loss in deposited dielectrics
    B.T. Buijtendorp; A. Endo; W. Jellema; K. Karatsu; K. Kouwenhoven; D. Lamers; A. J. van der Linden; K. Rostem; M. Veen; E. J. Wollack; J. J. A. Baselmans; S. Vollebregt;
    arXiv:2405.13688,
    2024.
    document

  9. Quantifying stress distribution in ultra-large graphene drums through modeshape imaging
    Ali Sarafraz; Hanqing Liu; Katarina Cvetanović; Marko Spasenović; Sten Vollebregt; Tomás Manzaneque Garcia; Peter G. Steeneken; Farbod Alijani; Gerard J. Verbiest;
    npj 2D materials and applications,
    Volume 8, Issue 45, 2024. DOI: 10.1038/s41699-024-00485-6

  10. Temperature Sensing Elements for Harsh Environments in a 4H-SiC CMOS Technology
    Jiarui Mo; Jinglin Li; Alexander May; Mathias Rommel; Sten Vollebregt; Guoqi Zhang;
    IEEE Transactions on Electron Devices,
    Volume 71, Issue 10, pp. 5881-5887, 2024. DOI: 10.1109/TED.2024.3450828

  11. Investigating Mechanical Properties of Silicon Carbide Coated Carbon Nanotube Composite at Elevated Temperatures
    Jiarui Mo; Gerald J.K. Schaffar; Leiming Du; Verena Maier-Kiener; Daniel Kiener; Sten Vollebregt; Guoqi Zhang;
    In IEEE 37th Intl. Conf. on Micro Electro Mechanical Systems (MEMS2024),
    2024. DOI: 10.1109/MEMS58180.2024.10439455

  12. A SiC-carbon nanotube composite for MEMS
    Sten Vollebregt;
    In Sensor Decade,
    2024. Invited keynote.

  13. In Situ Analysis of Copper Microstructures in Electromigration Using SEM-EBSD Techniques
    Yaqian Zhang; Yixin Yan; Sten Vollebregt; GuoQi Zhang;
    In Proceedings - IEEE 74th Electronic Components and Technology Conference (ECTC),
    pp. 1317-1321, 2024. DOI: 10.1109/ECTC51529.2024.00214

  14. Transfer-free Fabrication and Characterisation of Transparent Multilayer CVD Graphene MEAs for in-vitro Optogenetic Applications
    Gonzalo León González; Shanliang Deng; Sten Vollebregt; Vasiliki Giagka;
    In Proc. of IEEE Medical Measurements & Applications conference,
    2024. DOI: 10.1109/MeMeA60663.2024.10596734

  15. Origin of mm-submm loss in deposited dielectrics for superconducting astronomical instrumentation
    Bruno T. Buijtendorp; Akira Endo; Willem Jellema; Kenichi Karatsu; Ton van der Linden; Dimitry Lamers; Karwan Rostem; Edward J. Wollack; Jochem J. A. Baselmans; Sten Vollebregt; Robert Huisman; Martijn Veen;
    In Proceedings Volume PC13102, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII,
    2024. DOI: 10.1117/12.3020071

  16. Improvement of on-chip terahertz spectroscopy by nanometer-scale control of electron-beam lithography
    Leon Olde Scholtenhuis; Kenichi Karatsu; David J. Thoen; Louis H. Marting; Jochem J. A. Baselmans; Sten Vollebregt; Akira Endo;
    In Proceedings Volume 13092, Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave,
    2024. DOI: 10.1117/12.3017946

  17. The Impact of Outgassing of Molding Compound on Graphene for Gas Sensing
    Tiance An; Mudassir Husain; Sten Vollebregt;
    In Proc. of IEEE Sensors,
    2024.

  18. Optimization of multilayer graphene-based gas sensors by ultraviolet photoactivation
    Álvaro Peña; Daniel Matatagui; Filiberto Ricciardella; Leandro Sacco; Sten Vollebregt; Daniel Otero; JesúsLópez-Sánchez; Pilar Marína; M.Carmen Horrillo;
    Applied Surface Science,
    Volume 610, pp. 155393, 2023. DOI: 10.1016/j.apsusc.2022.155393

  19. Overview of Engineering Carbon Nanomaterials such as Carbon Nanotubes (CNTs), Carbon Nanofibers (CNFs), Graphene and Nanodiamonds and Other Carbon Allotropes inside Porous Anodic Alumina (PAA) Templates
    Leandro Sacco; Sten Vollebregt;
    MDPI Nanomaterials,
    Volume 13, Issue 2, pp. 260, 2023. DOI: 10.3390/nano13020260

  20. Transient thermal measurement on nano-metallic sintered die-attach joints using a thermal test chip
    R. Sattari; Dong Hu; Xu Liu; H. van Zeijl; S. Vollebregt; GuoQi Zhang;
    Applied Thermal Engineering,
    Volume 221, pp. 119503, 2023. DOI: 10.1016/j.applthermaleng.2022.119503

  21. Coupling Model of Electromigration and Experimental Verification – Part I: Effect of Atomic Concentration Gradient
    Zhen Cui; Xuejun Fan; Yaqian Zhang; Sten Vollebregt; Jiajie Fan; Guoqi Zhang;
    Journal of the Mechanics and Physics of Solids,
    Volume 174, pp. 105257, 2023. DOI: 10.1016/j.jmps.2023.105257

  22. Coupling Model of Electromigration and Experimental Verification – Part II: Impact of Thermomigration
    Zhen Cui; Xuejun Fan; Yaqian Zhang; Sten Vollebregt; Jiajie Fan; Guoqi Zhang;
    Journal of the Mechanics and Physics of Solids,
    Volume 174, pp. 105256, 2023. DOI: 10.1016/j.jmps.2023.105256

  23. Ultra-sensitive graphene membranes for microphone applications
    Gabriele Baglioni; Roberto Pezone; Sten Vollebregt; Katarina Cvetanović Zobenica; Marko Spasenović; Dejan Todorovic; Hanqing Liu; Gerard Verbiest; Herre S.J. van der Zant; Peter Gerard Steeneken;
    Nanoscale,
    Volume 15, pp. 6343-6352, 2023. DOI: 10.1039/D2NR05147H

  24. Microfabricated albedo insensitive sun position sensor system in silicon carbide with integrated 3D optics and CMOS electronics
    Joost Romijn; Sten Vollebregt; Vincent G. de Bie; Luke M. Middelburg; Brahim El Mansouri; Henk W. van Zeijl; Alexander May; Tobias Erlbacher; Johan Leijtens; Guoqi Zhang; Pasqualina M. Sarro;
    Sensors and Actuators A: Physical,
    Volume 354, pp. 114268, 2023. DOI: 10.1016/j.sna.2023.114268

  25. The sensitivity enhancement of TiO2-based VOCs sensor decorated by gold at room temperature
    Mostafa Shooshtari; Sten Vollebregt; Yas Vaseghi; Mahshid Rajati; Saeideh Pahlavan;
    IOP Nanotechnology,
    Volume 34, Issue 25, pp. 255501, 2023. DOI: 10.1088/1361-6528/acc6d7

  26. A Highly Linear Temperature Sensor Operating up to 600°C in a 4H-SiC CMOS Technology
    Jiarui Mo; Jinglin Li; Yaqian Zhang; Joost Romijn; Alexander May; Tobias Erlbacher; Guoqi Zhang; Sten Vollebregt;
    IEEE Electron Device Letters,
    Volume 44, Issue 6, pp. 995-998, 2023. DOI: 10.1109/LED.2023.3268334

  27. Nanostructured Thermoelectric Films Synthesised by Spark Ablation and Their Oxidation Behaviour
    Joost van Ginkel; Lisa Mitterhuber; Marijn Willem van de Putte; Mark Huijben; Sten Vollebregt; Guoqi Zhang;
    Nanomaterials,
    Volume 13, Issue 11, pp. 1778, 2023. DOI: 10.3390/nano13111778

  28. Copper Nanoparticle Sintering Enabled Hermetic Packaging With Fine Sealing Ring for MEMS Application
    Dong Hu; Mustafeez Bashir Shah; Jiajie Fan; Sten Vollebregt; Guoqi Zhang;
    IEEE Transactions on Electron Devices,
    Volume 70, Issue 11, pp. 5818-5823, 2023. DOI: 10.1109/TED.2023.3312066

  29. Quantifying stress distribution in ultra-large graphene drums through mode shape imaging
    Ali Sarafraz; Hanqing Liu; Katarina Cvetanović; Marko Spasenović; Sten Vollebregt; Tomas Manzaneque Garcia; Peter G. Steeneken; Farbod Alijani;
    arXiv,
    2023. DOI: 10.48550/arXiv.2311.00443

  30. Design and Characterization of a Data Converter in a SiC CMOS Technology for Harsh Environment Sensing Applications
    Yunfan Niu; Jiarui Mo; Alexander May; Mathias Rommel; Chiara Rossi; Joost Romijn; Guoqi Zhang; Sten Vollebregt;
    In Proc. of IEEE Sensors,
    2023. DOI: 10.1109/SENSORS56945.2023.10325061

  31. High-performance wafer-scale transfer-free graphene microphones
    Roberto Pezone; Gabriele Baglioni; Pasqualina M. Sarro; Peter G. Steeneken; Sten Vollebregt;
    In IEEE 36th Intl. Conf. on Micro Electro Mechanical Systems (MEMS2023),
    2023. DOI: 10.1109/MEMS49605.2023.10052360

  32. Silicon carbide reinforced vertically aligned carbon nanotube composite for harsh environment MEMS
    Jiarui Mo; Shreyas Shankar; Guoqi Zhang; Sten Vollebregt;
    In IEEE 36th Intl. Conf. on Micro Electro Mechanical Systems (MEMS2023),
    2023. DOI: 10.1109/MEMS49605.2023.10052162

  33. Electromigration-induced local dewetting in Cu films
    Yaqian Zhang; Jiarui Mo; Zhen Cui; Sten Vollebregt; GuoQi Zhang;
    In Proc. of the IEEE International Interconnect Technology Conference,
    2023. DOI: 10.1109/IITC/MAM57687.2023.10154761

  34. Reliability Analysis on Ag and Cu Nanoparticles Sintered Discrete Power Devices with Various Frontside and Backside Interconnects
    Dong Hu; Xu Liu; Sten Vollebregt; Jiajie Fan; Guoqi Zhang; Ali Roshanghias; Xing Liu; Thomas Basler; Emiel De Bruin;
    In Proc. of Electronic Components and Technology Conference (ECTC),
    2023.

  35. MOSFET-based And P-N Diode Based Temperature Sensors In A 4H-sSiC CMOS Technology
    Jiarui Mo; Jinglin Li; Yaqian Zhang; Alexander May; Tobias Erlbacher; Guoqi Zhang; Sten Vollebregt;
    In 22nd International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS 2023),
    2023.
    document

  36. Wafer-scale Transfer-free Graphene MEMS Condenser Microphones
    Roberto Pezone; Gabriele Baglioni; Leonardo di Paola; Pasqualina M. Sarro; Peter G. Steeneken; Sten Vollebregt;
    In 22nd International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS 2023),
    2023.
    document

  37. Graphene gas sensors monolithically integrated on microhotplates by using a transfer-free approach
    Leandro Sacco; Sten Vollebregt;
    In Graphene Week,
    2023.
    document

  38. High aspect-ratio multi-layer graphene MEMS condenser microphones
    Roberto Pezone; Gabriele Baglioni; Pasqualina M. Sarro; Peter G. Steeneken; Sten Vollebregt;
    In Graphene Week,
    2023.
    document

  39. Time Dependent Dielectric Breakdown of 4H-SiC MOSFETs in CMOS technology
    Yaqian Zhang; Jiarui Mo; Sten Vollebregt; GuoQi Zhang;
    In 24th International Conference on Electronic Packaging Technology (ICEPT),
    2023. DOI: 10.1109/ICEPT59018.2023.10492218

  40. Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfaces
    Nasim Bakhshaee Babaroud; Merlin Palmar; Andrada Iulia Velea; Chiara Coletti; Sebastian Weingärtner; Frans Vos; Wouter A. Serdijn; Sten Vollebregt; Vasiliki Giagka;
    Nature Microsystems & Nanoengineering,
    Volume 8, pp. 107, 2022. (featured article). DOI: 10.1038/s41378-022-00430-x

  41. Integrated Digital and Analog Circuit Blocks in a Scalable Silicon Carbide CMOS Technology
    Joost Romijn; Sten Vollebregt; Luke M. Middelburg; Brahim El Mansouri; Henk W. van Zeijl; Alexander May; Tobias Erlbacher; Guoqi Zhang; Pasqualina M. Sarro;
    IEEE Transactions on Electron Devices,
    Volume 69, Issue 1, pp. 4-10, 2022. DOI: 10.1109/TED.2021.3125279

  42. Technology Development for MEMS: A Tutorial
    Paddy J French; Gijs JM Krijnen; Sten Vollebregt; Massimo Mastrangeli;
    IEEE Sensors Journal,
    Volume 22, Issue 11, 2022. DOI: 10.1109/JSEN.2021.3104715

  43. Mass and density determination of porous nanoparticle films using a quartz crystal microbalance
    Hendrik Joost van Ginkel; Sten Vollebregt; GuoQi Zhang; Andreas Schmidt-Ott;
    IOP Nanotechnology,
    Volume 33, Issue 48, 2022. DOI: 10.1088/1361-6528/ac7811

  44. Characterization of low-loss hydrogenated amorphous silicon films for superconducting resonators
    Bruno T. Buijtendorp; Juan Bueno; David J. Thoen; Vignesh Murugesan; Paolo M. Sberna; Jochem J. A. Baselmans; Sten Vollebregt; Akira Endo;
    J. of Astronomical Telescopes, Instruments, and Systems,
    Volume 8, Issue 2, pp. 028006, 2022. DOI: 10.1117/1.JATIS.8.2.028006

  45. Effects of Temperature and Grain Size on Diffusivity of Aluminium: Electromigration Experiment and Molecular Dynamic Simulation
    Zhen Cui; Yaqian Zhang; Dong Hu; Sten Vollebregt; Jiajie Fan, Xuejun Fan; Guoqi Zhang;
    Journal of Physics: Condensed Matter,
    Volume 34, pp. 175401, 2022. DOI: 10.1088/1361-648X/ac4b7f

  46. Enhancement of Room Temperature Ethanol Sensing by Optimizing the Density of Vertically Aligned Carbon Nanofibers Decorated with Gold Nanoparticles
    Mostafa Shooshtari; Leandro Nicolas Sacco; Joost Van Ginkel; Sten Vollebregt; Alireza Salehi;
    MDPI Materials,
    Volume 15, Issue 4, pp. 1383, 2022. DOI: 10.3390/ma15041383

  47. Sensitive Transfer-Free Wafer-Scale Graphene Microphones
    Roberto Pezone; Gabriele Baglioni; Pasqualina M. Sarro; Peter G. Steeneken; Sten Vollebregt;
    ACS Applied Materials & Interfaces,
    Volume 14, Issue 18, pp. 21705-21712, 2022. DOI: 10.1021/acsami.2c03305

  48. Direct Wafer-Scale CVD Graphene Growth under Platinum Thin-Films
    Yelena Hagendoorn; Gregory Pandraud; Sten Vollebregt; Bruno Morana; Pasqualina M. Sarro; Peter G. Steeneken;
    MDPI Materials,
    Volume 15, Issue 10, pp. 3723, 2022.
    document

  49. Angle Sensitive Optical Sensor for Light Source Tracker Miniaturization
    Joost Romijn; Secil Sanseven; Guoqi Zhang; Sten Vollebregt; Pasqualina M. Sarro;
    IEEE Sensors Letters,
    Volume 6, Issue 6, pp. 1-4, 2022. DOI: 10.1109/LSENS.2022.3175607

  50. Hydrogenated amorphous silicon carbide: A low-loss deposited dielectric for microwave to submillimeter-wave superconducting circuits
    B. T. Buijtendorp; S. Vollebregt; K. Karatsu; D. J. Thoen; V. Murugesan; K. Kouwenhoven; S. Hähnle; J. J. A. Baselmans; A. Endo;
    Physical Review Applied,
    Volume 18, pp. 064003, 2022. DOI: 10.1103/PhysRevApplied.18.064003

  51. Integrated 64 pixel UV image sensor and readout in a silicon carbide CMOS technology
    Joost Romijn; Sten Vollebregt; Luke M. Middelburg; Brahim El Mansouri; Henk W. van Zeijl; Alexander May; Tobias Erlbacher; Johan Leijtens; Guoqi Zhang; Pasqualina M. Sarro;
    Nature Microsystems & Nanoengineering,
    Volume 8, pp. 114, 2022. DOI: 10.1038/s41378-022-00446-3

  52. Patterning of Fine-Features in Nanoporous Films Synthesized by Spark Ablation
    Xinrui Ji; Joost van Ginkel; Dong Hu; Andreas Schmidt-Ott; Henk van Zeijl; Sten Vollebregt; GuoQi Zhang;
    In Proc. IEEE Nano,
    pp. 238-241, 2022. DOI: 10.1109/NANO54668.2022.9928705

  53. Visible Blind Quadrant Sun Position Sensor in a Silicon Carbide Technology
    Joost Romijn; Sten Vollebregt; Alexander May; Tobias Erlbacher; Henk W. van Zeijl; Johan Leijtens; GuoQi Zhang; Pasqualina M. Sarro;
    In 35th Intl. Conf. on Micro Electro Mechanical Systems (MEMS 2022),
    2022. DOI: 10.1109/MEMS51670.2022.9699533

  54. Synthesis of Carbon Nanofibers (CNFs) by PECVD Using Ni Catalyst Printed by Spark Ablation
    Leandro Sacco; Joost van Ginkel; Sten Vollebregt;
    In Proc. IEEE Nano,
    pp. 128-131, 2022. DOI: 10.1109/NANO54668.2022.9928632

  55. ZnO Nanoparticle Printing for UV Sensor Fabrication
    Hendrik Joost van Ginkel; Mattia Orvietani; Joost Romijn; GuoQi Zhang; Sten Vollebregt;
    In Proc. of IEEE Sensors,
    2022. DOI: 10.1109/SENSORS52175.2022.9967053

  56. Humidity Sensor Based on Multi-Layer Graphene (MLG) Integrated Onto a Micro-Hotplate (MHP)
    Leandro Sacco; Hanxing Meng; Sten Vollebregt;
    In Proc. of IEEE Sensors,
    2022. DOI: 10.1109/SENSORS52175.2022.9967039

  57. Transfer-free multi-layer graphene as a platform for NEMS/MEMS sensors
    Sten Vollebregt;
    In MNE-ES conference (plenary),
    2022.

  58. Transfer-free multi-layered graphene (MLG) on integrated microheaters: an attractive platform for gas sensing
    Leandro Sacco; Hanxing Meng; Sten Vollebregt;
    In MNE-ES conference,
    2022.

  59. Wafer-Scale Transfer-Free Sensitive Graphene Microphones
    Roberto Pezone; G. Baglioni; P.M. Sarro; P.G. Steeneken; S. Vollebregt;
    In Graphene Week,
    2022.
    document

  60. Characterization of ultra-sensitive graphene membranes for microphone applications
    Gabriele Baglioni; Roberto Pezone; Sten Vollebregt; Katarina Cvetanović; Marko Spasenović; Dejan Todorović; Hanqing Liu; Gerard J. Verbiest; Herre S.J. van der Zant; Peter G. Steeneken;
    In Graphene Week,
    2022.
    document

  61. Low-loss a-SiC:H for superconducting microstrip lines for (sub-)millimeter astronomy
    Bruno T. Buijtendorp; Akira Endo; Kenichi Karatsu; David Thoen; Vignesh Murugesan; Kevin Kouwenhoven; Sebastian Hähnle; Jochem J. A. Baselmans; Sten Vollebregt;
    In Proc. SPIE PC12190, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI,
    pp. PC121900W, 2022. DOI: 10.1117/12.2630107

  62. Multi-Layer Graphene Pirani Pressure Sensors
    Romijn, Joost; Dolleman, Robin; Singh, Manvika; van der Zant, Herre; Steeneken, Peter; Sarro, Pasqualina; Vollebregt, Sten;
    IOP Nanotechnology,
    Volume 32, Issue 33, pp. 335501, 2021. DOI: 10.1088/1361-6528/abff8e

  63. Effect of Temperature and Humidity on the Sensing Performance of TiO2 Nanowire-based Ethanol Vapor Sensors
    Mostafa Shooshtari; Alireza Salehi; Sten Vollebregt;
    IOP Nanotechnology,
    Volume 32, Issue 32, pp. 325501, 2021. DOI: 10.1088/1361-6528/abfd54

  64. Surface-micromachined Silicon Carbide Pirani Gauges for Harsh Environments
    Jiarui Mo; Luke Middelburg; Bruno Morana; H.W. Van Zeijl; Sten Vollebregt; GuoQi Zhang;
    IEEE Sensors Letters,
    Volume 21, Issue 2, pp. 1350-1358, 2021. DOI: 10.1109/JSEN.2020.3019711

  65. Monolithic Integration of a Smart Temperature Sensor on a Modular Silicon-based Organ-on-a-chip Device
    Ronaldo Martins da Ponte; Nikolas Gaio; Henk van Zeijl; Sten Vollebregt; Paul Dijkstra; Ronald Dekker; Wouter A. Serdijn; Vasiliki Giagka;
    Sensors and Actuators A: Physical,
    Volume 317, pp. 112439, 2021. DOI: 10.1016/j.sna.2020.112439
    document

  66. Influence of defect density on the gas sensing properties of multi-layered graphene grown by chemical vapor deposition
    Filiberto Ricciardella; Sten Vollebregt; Rita Tilmann; Oliver Hartwig; Cian Bartlam; Pasqualina M. Sarro; Hermann Sachdev; Georg S.Duesberg;
    Carbon Trends,
    Volume 3, pp. 100024, 2021.
    document

  67. Insights into the high-sulphur aging of sintered silver nanoparticles: An experimental and ReaxFF study
    Dong Hu; Tijian Gu; Zhen Cui; Sten Vollebregt; Xuejun Fan; Guoqi Zhang; Jiajie Fan;
    Corrosion Science,
    pp. 109846, 2021. DOI: 10.1016/j.corsci.2021.109846

  68. Hydrogenated Amorphous Silicon Carbide: A Low-loss Deposited Dielectric for Microwave to Submillimeter Wave Superconducting Circuits
    B. T. Buijtendorp; S. Vollebregt; K. Karatsu; D. J. Thoen; V. Murugesan; K. Kouwenhoven; S. Hähnle; J. J. A. Baselmans, A. Endo;
    arXiv,
    2021.
    document

  69. Room temperature ppt-level NO2 gas sensor based on SnOx/SnS nanostructures with rich oxygen vacancies
    Hongyu Tang; Chenshan Gao; Huiru Yang; Leandro Nicolas Sacco; Robert Sokolovskij; Hongze Zheng; Huaiyu Ye; Sten Vollebregt; Hongyu Yu; Xuejun Fan; Guoqi Zhang;
    2D Materials,
    2021. DOI: 10.1088/2053-1583/ac13c1

  70. Transfer-free multi-layer graphene: a platform for NEMS/MEMS sensors
    Sten Vollebregt;
    In Graphene Conference,
    2021. (invited).

  71. Wafer-scale graphene: a transfer-free approach
    Sten Vollebregt;
    In Graphene Online,
    2021. (invited).
    document

  72. Towards a Scalable Sun Position Sensor with Monolithic Integration of the 3d Optics for Miniaturized Satellite Attitude Control
    J. Romijn; S. Vollebregt; H. W. van Zeijl; G. Zhang; J. Leijtens; P. M. Sarro;
    In 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS),
    pp. 642-645, Jan 2021. DOI: 10.1109/MEMS51782.2021.9375434

  73. Resistive and PTAT Temperature Sensors in a Silicon Carbide CMOS Technology
    Joost Romijn; Luke M. Middelburg; Sten Vollebregt; Brahim El Mansouri; Henk W. van Zeijl; Alexander May; Tobias Erlbacher; Guoqi Zhang; and Pasqualina M. Sarro;
    In Proc. of IEEE Sensors,
    2021.

  74. High step coverage interconnects by printed nanoparticles
    Hendrik Joost van Ginkel; Joost Romijn; Sten Vollebregt; GuoQi Zhang;
    In Proc. of the 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC),
    2021.

  75. Low-loss dielectric for high frequency cryogenic applications
    J.J.A. Baselmans; B.T. Buijtendorp; A. Endo; S. Vollebregt;
    Patent, NL2024742B1; WO2021150101, 2021.

  76. Low-friction, wear-resistant, and electrically homogeneous multilayer graphene grown by chemical vapor deposition on molybdenum
    Borislav Vasic; Uros Ralevic; Katarina Cvetanovic Zobenica; Milce Smiljanic; Rados Gajic; Marko Spasenovic; Sten Vollebregt;
    Applied Surface Science,
    Volume 509, pp. 144792, 2020. DOI: 10.1016/j.apsusc.2019.144792

  77. Infrared absorbance of vertically-aligned multi-walled CNT forest as a function of synthesis temperature and time
    Amir Mirza Gheytaghia; Amir Ghaderi; Sten Vollebregt; Majid Ahmadic; Reinoud Wolffenbuttel; GuoQi Zhang;
    Materials Research Bulletin,
    2020. DOI: 10.1016/j.materresbull.2020.110821

  78. Toward a Self-Sensing Piezoresistive Pressure Sensor for all-SiC Monolithic Integration
    L.M. Middelburg; H.W. van Zeijl; S. Vollebregt; B. Morana; GuoQi Zhang;
    IEEE Sensors,
    Volume 20, Issue 19, pp. 11265-11274, 2020. DOI: 10.1109/JSEN.2020.2998915

  79. Low-Humidity Sensing Properties of Multi-Layered Graphene Grown by Chemical Vapor Deposition
    Filiberto Ricciardella; Sten Vollebregt; Tiziana Polichetti; Pasqualina M. Sarro; Georg S. Duesberg;
    MDPI Sensors,
    Volume 20, Issue 11, pp. 3174, 2020.
    document

  80. Wafer-scale transfer-free process of multi-layered graphene grown by chemical vapor deposition
    Filiberto Ricciardella; Sten Vollebregt; Bart Boshuizen; F.J.K. Danzl; Ilkay Cesar; Pierpaolo Spinelli; Pasqualina Maria Sarro;
    Material Research Express,
    2020. DOI: 10.1088/2053-1591/ab771e

  81. Vertically-Aligned Multi-Walled Carbon Nano Tube Pillars with Various Diameters under Compression: Pristine and NbTiN Coated
    Amir Mirza Gheitaghy; René H. Poelma; Leandro Sacco; Sten Vollebregt; GuoQi Zhang;
    MDPI Nanomaterials,
    Volume 10, Issue 6, pp. 1189, 2020. DOI: 10.3390/nano10061189

  82. The influence of H2 and NH3 on catalyst nanoparticle formation and carbon nanotube growth
    R. Pezone; S. Vollebregt; P.M. Sarro; Sandeep Unnikrishnan;
    Carbon,
    Volume 170, pp. 384-393, 2020.
    document

  83. Low power AlGaN/GaN MEMS pressure sensor for high vacuum application
    Jianwen Sun; Dong Hu; Zewen Liu; Luke Middelburg; Sten Vollebregt; Pasqualina M. Sarro; Guoqi Zhang;
    Sensors and Actuators A: Physical,
    Volume 314, pp. 112217, 2020.
    document

  84. Effect of Humidity on Gas Sensing Performance of Carbon Nanotube Gas Sensors Operated at Room Temperature
    Mostafa Shooshtari; Alireza Salehi; Sten Vollebregt;
    IEEE Sensors,
    2020.
    document

  85. Recent advances in 2D/nanostructured metal sulfide-based gas sensors: mechanisms, applications, and perspectives
    Hongyu Tang; Leandro Sacco; Sten Vollebregt; Huaiyu Ye; Xuejun; Fan; GuoQi Zhang;
    Journal of Materials Chemistry A,
    Volume 8, pp. 24943-24976, 2020.
    document

  86. Soft, flexible and transparent graphene-based active spinal cord implants for optogenetic studies
    A. Velea; S. Vollebregt; Vasiliki Giagka;
    13th International Symposium on Flexible Organic Electronics (ISFOE20),
    2020. Scientific Poster.
    document

  87. Functionalisation of Multi-Layer Graphene-Based Gas Sensor by Au Nanoparticles
    Morelli, Laura; Ricciardella, Filiberto; Koole, Max; Persijn, Stefan; Vollebregt, Sten;
    Proceedings,
    Volume 56, Issue 1, pp. 1, Dec 2020. DOI: 10.3390/proceedings2020056001
    document

  88. Functionalization of multi-layer graphene-based gas sensor by Au nanoparticles
    Laura Morelli; Filiberto Ricciardelli; Max Koole; Stefan Persijn; Sten Vollebregt;
    In Proc. of NanoFIS,
    2020.

  89. 3D-impaction printing of porous layers
    van Ginkel, H. J.; Roels, P.; Boeije, M. F. J.; Pfeiffer, T. V.; Vollebregt, S.; GuoQi Zhang; Schmidt-Ott, A.,;
    In European Aerosol Conference,
    2020.

  90. Wafer-scale Graphene-based Soft Implant with Optogenetic Compatibility
    Andrade Velea; Sten Vollebregt; Gandhika Wardhana; Vasso Giagka;
    In IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS 2020),
    2020.

  91. Characterization of low-loss hydrogenated amorphous silicon films for superconducting resonators
    B. T. Buijtendorp; J. Bueno; D. J. Thoen; V. Murugesan; P. M. Sberna; J. J. A. Baselmans; S. Vollebregt; A. Endo;
    In Proc. SPIE 11453, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X,
    2020.
    document

  92. Analysis of a calibration method for non-stationary CVD multi-layered graphene-based gas sensors
    Filiberto Ricciardella; Tiziana Polichetti; Sten Vollebregt; Brigida Alfano; Ettore Massera; Lina Sarro;
    IOP Nanotechnology,
    Volume 30, pp. 385501-1-8, 2019. DOI: 10.1088/1361-6528/ab2aac
    document

  93. Growth of multi-layered graphene on molybdenum catalyst by solid phase reaction with amorphous carbon
    Filiberto Ricciardella; Sten Vollebregt; Evgenia Kurganova; A.J.M. Giesbers; Majid Ahmadi; Lina Sarro;
    2D Materials,
    Volume 6, pp. 035012, 2019. DOI: 10.1088/2053-1583/ab1518

  94. Mass measurement of graphene using quartz crystal microbalances
    Robin J Dolleman; Mick Hsu; Sten Vollebregt; John E Sader; Herre SJ van der Zant; Peter G Steeneken; Murali K Ghatkesar;
    Applied Physics Letters,
    Volume 115, Issue 5, pp. 053102, 2019. DOI: 10.1063/1.5111086
    document

  95. Towards an Active Graphene-PDMS Implant
    Wardhana, G. K.; Serdijn, W.; Vollebregt, S.; Giagka, V.;
    In Abstract from 7th Dutch Bio-Medical Engineering Conference,
    2019.
    document

  96. Compressive response of pristine and superconductor coated MWCNT pillars
    A. M. Gheytaghi; S. Vollebregt; R.H. Poelma; H. W. Zeijl; GuoQi Zhang;
    In IEEE MEMS,
    2019.

  97. Wafer-scale integration of CVD graphene on CMOS devices using a transfer-free approach
    Sten Vollebregt; Joost Romijn; Henk W. van Zeijl; Pasqualina M. Sarro;
    In Graphene Week,
    2019.

  98. Free-standing, Transfer-free Graphene-based Differential Pressure Sensors
    R. Ramesha; S. Vollebregt; P.M. Sarro;
    In SAFE/ProRISC,
    2019.

  99. Transfer-free Graphene-based Differential Pressure Sensor
    Raghutham Ramesha; Sten Vollebregt; Lina Sarro;
    In Proc. IEEE NMDC,
    2019.

  100. Towards a Microfabricated Flexible Graphene-Based Active Implant for Tissue Monitoring During Optogenetic Spinal Cord Stimulation
    Andrada Iulia Velea; Sten Vollebregt; Tim Hosman; Anna Pak; Vasiliki Giagka;
    In Proc. IEEE NMDC,
    2019.

  101. Flexible, graphene-based acive implant for spinal cord stimulation in rodents
    Andrada Velea; Sten Vollebregt; Vasiliki Giagka;
    In SAFE/ProRISC,
    2019.

  102. A wafer-scale process for the monolithic integration of CVD graphene and CMOS logic for smart MEMS/NEMS sensors
    Joost Romijn; Sten Vollebregt; Henk W. van Zeijl; Pasqualina M. Sarro;
    In IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). Piscataway: IEEE,
    2019. DOI: 10.1109/MEMSYS.2019.8870741

  103. Graphene pellicle lithographic apparatus
    Evgenia Kurganova; Jos Giesbers; Maria Peter; Maxim Naselevich; Arnoud Notenboom; Alexander Klein; Pieter-Jan van Zwol; David Vles; Pim Voorthuijzen; Sten Vollebregt;
    Patent, WO2019170356, 2019.

  104. Full wafer transfer-free graphene
    Filiberto Ricciardella; Sten Vollebregt; Lina Sarro;
    Patent, WO2019125140; NL2020111, 2019.

  105. Grafeen: een zoektocht naar de toepassing
    Sten Vollebregt; Jos Giesbers; Johan Klootwijk;
    Nederlands Tijdschrift voor Natuurkunde,
    pp. 16-20, September 2018.

  106. Carbon Nanotube Array: Scaffolding Material for Opto, Electro, Thermo, and Mechanical Systems
    Amir M. Gheytaghi; H. van Zeijl; S. Vollebregt; R.H. Poelma; C. Silvestri; R. Ishihara; G. Q. Zhang; P. M. Sarro;
    Innovative Materials,
    Volume 3, pp. 22-25, 2018.

  107. Effects of Conformal Nanoscale Coatings on Thermal Performance of Vertically Aligned Carbon Nanotubes
    Cinzia Silvestri; Michele Riccio; René H. Poelma; Aleksandar Jovic; Bruno Morana; Sten Vollebregt; Andrea Irace; GuoQi Zhang; Pasqualina M. Sarro;
    Small,
    Volume 14, Issue 20, pp. 1800614, 2018. DOI: 10.1002/smll.201800614

  108. A transfer-free approach to wafer-scale graphene deposited by chemical vapour deposition
    Sten Vollebregt; Filiberto Ricciardella; Joost Romijn; Manvika Singh; Shengtai Shi; Lina Sarro;
    In Graphene Conference,
    2018. (invited).
    document

  109. Making large free-standing multi-layer graphene/graphitic membranes
    Evgenia Kurganova; A.J.M. Giesbers; Sten Vollebregt; Arnoud Notenboom; David Vles; Maxim Nasalevich; Peter van Zwol;
    In Graphene Conference,
    2018.

  110. A Miniaturized Low Power Pirani Pressure Sensor Based on Suspended Graphene
    Joost Romijn; Sten Vollebregt; Robin J. Dolleman; Manvika Singh; Herre S.J. van der Zant; Peter G. Steeneken; Pasqualina M. Sarro;
    In Proceedings of IEEE NEMS,
    2018.

  111. Wafer-scale CVD graphene integration: a transfer-free approach
    Sten Vollebregt;
    In GrapChina,
    2018. (invited).

  112. Wafer Level Through-polymer Optical Vias (TPOV) Enabling High Throughput of Optical Windows Manufacturing
    Z. Huang; R.H. Poelma; S. Vollebregt; M.H. Koelink; E. Boschman; R. Kropf; M. Gallouch; GuoQi Zhang;
    In IEEE Electronics System-Integration Technology Conference (ESTC),
    pp. 1-5, 2018.

  113. Effect of droplet shrinking on surface acoustic wave response in microfluidic applications
    Thu Hang Bui; Van Nguyen; Sten Vollebregt; Bruno Morana; Henk van Zeijl; Trinh Chu Duc; P.M. Sarro;
    Applied Surface Science,
    Volume 426, pp. 253-261, 2017.
    document

  114. Effects of Graphene Monolayer Coating on the Optical Performance of Remote Phosphors
    Maryam Yazdan Mehr; S. Vollebregt; W. D. van Driel; GuoQi Zhang;
    Journal of Electronic Materials,
    Volume 46, Issue 10, pp. 5866--5872, 2017. DOI: 10.1007/s11664-017-5592-8
    Keywords: ... graphene, Light-emitting diode, reliability, remote phosphor.

  115. Effects of graphene defects on gas sensing properties towards NO2 detection
    Filiberto Ricciardella; Sten Vollebregt; Tiziana Polichetti; Mario Miscuglio; Brigida Alfano; Maria L. Miglietta; Ettore Massera; Girolamo Di Francia; Pasqualina M. Sarro;
    Nanoscale,
    Volume 9, pp. 6085-6093, 2017.
    document

  116. CVD transfer-free graphene for sensing applications
    Chiara Schiattarella; Sten Vollebregt; Tiziana Polichetti; Brigida Alfano; Ettore Massera; Maria Lucia Miglietta; Girolamo Di Francia; Pasqualina Maria Sarro;
    Beilstein Journal of Nanotechnology,
    Volume 8, pp. 1015-1022, 2017.
    document

  117. Carbon Nanotubes as Vertical Interconnects for 3D Integrated Circuits
    Sten Vollebregt; Ryoichi Ishihara;
    In Carbon Nanotubes for Interconnects,
    Springer International Publishing, 2017.
    document

  118. A transfer-free wafer-scale method for the fabrication of suspended graphene beams for squeeze-film pressure sensors
    S. Vollebregt; R.J. Dolleman; H.S.J. van der Zant; P.G. Steeneken; P.M. Sarro;
    In Graphene Week,
    2017.

  119. An Innovative Approach to Overcome Saturation and Recovery Issues of CVD graphene-Based Gas Sensors
    F. Ricciardella; S. Vollebregt; T. Polichetti; B. Alfano; E. Massera; P. M. Sarro;
    In Proceedings of IEEE Sensors Conference,
    pp. 1224-1226, 2017.

  120. Wafer-scale measurements of the specific contact resistance between different metals and mono- and multi-layer graphene
    S. Vollebregt; M. Singh; D.J. Wehenkel; R. van Rijn; P.M. Sarro;
    In Proc. of the 43rd international conference on Micro and Nanoengineering (MNE),
    pp. 152, 2017.

  121. Low Temperature CVD Grown Graphene for Highly Selective Gas Sensors Working under Ambient Conditions
    Filiberto Ricciardella; Sten Vollebregt; Tiziana Polichetti; Brigida Alfano; Ettore Massera; Pasqualina M. Sarro;
    In Proceedings of Eurosensors 2017,
    pp. 445, 2017.
    document

  122. High sensitive CVD graphene-based gas sensors operating under environmental conditions
    Filiberto Ricciardella; Sten Vollebregt; Tiziana Polichetti; Brigida Alfano; Ettore Massera; Pasqualina M. Sarro;
    In Graphene Conference,
    2017.

  123. Horizontally aligned carbon nanotube scaffolds for freestanding structures with enhanced conductivity
    Cinzia Silvestri; Federico Marciano; Bruno Morana; Violeta Podranovic; Sten Vollebregt; GuoQi Zhang; Pasqualina M Sarro;
    In Micro Electro Mechanical Systems (MEMS), 2017 IEEE 30th International Conference on,
    pp. 266-269, 2017.

  124. Suspended graphene beams with tunable gap for squeeze-film pressure sensing
    S. Vollebregt; R.J. Dolleman; H.S.J. van der Zant; P.G. Steeneken; P.M. Sarro;
    In Proc.of Transducers 2017, the 19th International Conference on Solid-state Sensors, Actuators, and Microsystems,
    pp. 770-773, 2017.

  125. Fabrication and characterization of an Upside-down Carbon Nanotube (CNT) Microelectrode array (MEA)
    Gaio, N.; Silvestri, C.; van Meer, B.; Vollebregt, S.; Mummery, C.; Dekker, R.;
    IEEE Sensors Journal,
    Volume 16, Issue 24, pp. 8685, 2016.

  126. Thermal characterization of carbon nanotube foam using MEMS microhotplates and thermographic analysis
    Cinzia Silvestri; Michele Riccio; Rene Poelma; Bruno Morana; Sten Vollebregt; Fabio Santagata; Andrea Irace; GuoQi Zhang; Pasqualina M. Sarro;
    Nanoscale,
    Volume 8, pp. 8266-8275, 2016.
    document

  127. Stretchable Binary Fresnel Lens for Focus Tuning
    Xueming Li; Lei Wei; Ren� H. Poelma; Sten Vollebregt; Jia Wei; Hendrik Paul Urbach; Pasqualina M. Sarro; GuoQi Zhang;
    Scientific Reports,
    Volume 6, pp. 25348, 2016.

  128. The growth of carbon nanotubes on electrically conductive ZrN support layers for through-silicon vias
    Sten Vollebregt; Sourish Banerjee; Frans D. Tichelaar; Ryoichi Ishihara;
    Microelectronic Engineering,
    Volume 156, pp. 126-130, 2016.
    document

  129. The Direct Growth of Carbon Nanotubes as Vertical Interconnects in 3D Integrated Circuits
    Sten Vollebregt; Ryoichi Ishihara;
    Carbon,
    Volume 96, pp. 332-338, 2016.
    document

  130. High sensitive gas sensors realized by a transfer-free process of CVD graphene
    Filiberto Ricciardella; Sten Vollebregt; Tiziana Polichetti; Brigida Alfano; Ettore Massera; Lina Sarro;
    In Proceedings of the IEEE Sensors conference,
    2016.

  131. A predefined wafer-scale CVD graphene deposition method requiring no transfer
    Sten Vollebregt; Lina Sarro;
    In Graphene Week,
    2016.

  132. A transfer-free wafer-scale CVD graphene fabrication process for MEMS/NEMS sensors
    S. Vollebregt; B. Alfano; F. Ricciardella; A.J.M. Giesbers; Y. Grachova; H.W. van Zeijl; T. Polichetti; P.M. Sarro;
    In Proc. of the 29th IEEE International Conference of Micro Electro Mechanical Systems,
    pp. 17-20, 2016.

  133. Fabrication of Low Temperature Carbon Nanotube Vertical Interconnects Compatible with Semiconductor Technology
    S. Vollebregt; R. Ishihara;
    Journal of Visual Experiments,
    Volume 106, pp. e53260, 2015.
    document

  134. Impact of the atomic layer deposition precursors diffusion on solid-state carbon nanotube based supercapacitors performances
    G Fiorentino; S Vollebregt; FD Tichelaar; R Ishihara; PM Sarro;
    IOP Nanotechnology,
    Volume 26, Issue 6, pp. 064002, 2015.
    document

  135. Doped Carbon Nanotubes for Interconnects
    J. Robertson; S. Esconjauregui; L. D’Arsie; J. Yang; H. Sugime; G. Zhong; Y. Guo; S. Vollebregt; R. Ishihara; C. Cepek; G. Duesberg; T. Hallam;
    In Extended Abstracts of the 2015 International Conference on Solid State Devices and Materials (SSDM),
    2015.

  136. Carbon nanotubes TSV grown on an electrically conductive ZrN support layer
    Sten Vollebregt; Sourish Banerjee; Frans D. Tichelaar; Ryoichi Ishihara;
    In IEEE International Interconnect Technology Conference,
    pp. 281-283, 2015.

  137. Molybdenum grown CVD graphene Schottky diodes
    S. Vollebregt; F. Ricciardella; Y. Grachova; T. Polichetti; P.M. Sarro;
    In Graphene Week,
    2015.

  138. Tunable binary fresnel lens based on stretchable PDMS/CNT compsite
    Xueming Li; L. Wei; S. Vollebregt; R. Poelma; Y. Shen; Jia Wei; P. Urbach; P.M. Sarro; GuoQi Zhang;
    In Transducers,
    pp. 2041-2044, 2015.

  139. Crystallinity variations over the length of vertically aligned carbon nanotubes grown by chemical vapour deposition
    S. Vollebregt; P. Padmanabhan; C. Silvestri; P.M. Sarro;
    In 41st Micro and Nano Engineering conference,
    2015.

  140. The Role of Edge Defects in Liquid Phase Exfoliated and Chemical Vapor Deposited Graphene for NO2 Detection
    F Ricciardella; S Vollebregt; T Polichetti; B Alfano; PM Sarro; ML Miglietta; E Massera; G Di Francia;
    In GraphITA,
    2015.

  141. Upside-down Carbon Nanotube (CNT) Micro-electrode Array (MEA)
    N. Gaio; B. van Meer; C. Silvestri; Saeed Khoshfetrat Pakazad; S. Vollebregt; C.L. Mummery; R. Dekker;
    In IEEE Sensors Conference,
    2015.

  142. Dominant thermal boundary resistance in multi-walled carbon nanotube bundles fabricated at low temperature
    Vollebregt, Sten; Banerjee, Sourish; Chiaramonti, Ann N; Tichelaar, Frans D; Beenakker, Kees; Ishihara, Ryoichi;
    Journal of Applied Physics,
    Volume 116, Issue 2, pp. 023514, 2014.

  143. Carbon nanotube vertical interconnects fabricated at temperatures as low as 350 �C
    Vollebregt, Sten; Tichelaar, FD; Schellevis, H; Beenakker, CIM; Ishihara, R;
    Carbon,
    Volume 71, pp. 249--256, 2014.

  144. Failure Analysis and Reliability of Low-Temperature-Grown Multi-Wall Carbon Nanotube Bundles Integrated as Vias in Monolithic Three-Dimensional Integrated Circuits
    Chiaramonti, Ann N; Vollebregt, Sten; Sanders, Aric W; Ishihara, Ryoichi; Read, David T;
    Microsc. Microanal,
    Volume 20, pp. 1762-1763, 2014.

  145. Tailoring the Mechanical Properties of High-Aspect-Ratio Carbon Nanotube Arrays using Amorphous Silicon Carbide Coatings
    Poelma, RH; Morana, Bruno; Vollebregt, Sten; Schlangen, Erik; van Zeijl, HW; Fan, Xuejun; Zhang, GuoQi;
    Advanced Functional Materials,
    Volume 24, Issue 36, pp. 5737-5744, 2014.
    document

  146. Carbon Nanotube Vertical Interconnects: Prospects and Challenges
    Vollebregt, S; Beenakker, CIM; Ishihara, R;
    In Micro-and Nanoelectronics: Emerging Device Challenges and Solutions,
    CRC Press, 2014.

  147. High Quality Wafer-scale CVD Graphene on Molybdenum Thin Film for Sensing Application
    Yelena Grachova; Sten Vollebregt; Andrea Leonardo Lacaita; Pasqualina M. Sarro;
    In Procedia Engineering 87: EUROSENSORS 2014, the 28th European Conference on Solid-State Transducers,
    pp. 1501-1504, 2014.
    document

  148. 3D solid-state supercapacitors obtained by ALD coating of high-density carbon nanotubes bundles
    Fiorentino, Giuseppe; Vollebregt, Sten; Tichelaar, FD; Ishihara, Ryoichi; Sarro, Pasqualina M;
    In Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on,
    IEEE, pp. 342--345, 2014.

  149. CNT bundles growth on microhotplates for direct measurement of their thermal properties
    C. Silvestri; B. Morana; G. Fiorentino; S. Vollebregt; G. Pandraud; F. Santagata; GuoQi Zhang; P.M. Sarro;
    In 27th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2014),
    San Francisco, USA, Jan. 2014.
    document

  150. Carbon Nanotubes as Vertical Interconnects in 3D Integrated Circuits
    Sten Vollebregt;
    PhD thesis, Delft University of Technology, 2014.
    document

  151. Size-Dependent Effects on the Temperature Coefficient of Resistance of Carbon Nanotube Vias
    Vollebregt, Sten; Banerjee, Sourish; Beenakker, Kees; Ishihara, Ryoichi;
    Electron Devices, IEEE Transactions on,
    Volume 60, Issue 12, pp. 4085--4089, 2013.

  152. Thermal conductivity of low temperature grown vertical carbon nanotube bundles measured using the three-ω method.
    S. Vollebregt; S. Banerjee; C.I.M. Beenakker; R. Ishihara;
    Applied Physics Letters,
    Volume 102, Issue 19, pp. 1-4, 2013.

  153. Towards the integration of carbon nanotubes as vias in monolithic three-dimensional integrated circuits
    S. Vollebregt; Chiaramonti A.N.; J. van der Cingel; C.I.M. Beenakker; R. Ishihara;
    Japanese Journal of Applied Physics. Part 1, Regular Papers Brief Communications & Review Papers,
    Volume 52, Issue 1-5, 2013.

  154. Integrating low temperature aligned carbon nanotubes as vertical interconnects in Si technology
    Sten Vollebregt; Ryoichi Ishihara; Jaber J. Derakhshandehohan van der Cingel; Hugo Schellevis; C.I.M. Beenakker;
    In Nanoelectronic Device Applications Handbook,
    Taylor and Francis, 2013.

  155. Carbon Nanotubes as Interconnects in Integrated Circuits
    Vollebregt, S; Ishihara, R; Beenakker, CIM;
    In Dekker Encyclopedia of Nanoscience and Nanotechnology, Second Edition,
    Taylor and Francis, 2013.

  156. Carbon nanotube vias fabricated at back-end of line compatible temperature using a novel CoAl catalyst
    S. Vollebregt; H. Schellevis; C.I.M. Beenakker; R. Ishihara;
    In S. Ogawa (Ed.), IEEE International Interconnect Technology Conference-technical papers,
    Kyoto, Japan, Jun. 2013.

  157. Carbon Nanotube based heat-sink for solid state lighting
    F. Santagata; G. Almanno; S. Vollebregt; C Silvestri; GuoQi Zhang; P.M. Sarro;
    In 8th IEEE Int. Conf. Nano/Micro Engineered and Molecular Systems (NEMS),
    pp. 1214-1217, Apr 2013. DOI 10.1109/NEMS.2013.6559937.

  158. Influence of the growth temperature on the first and second-order Raman band ratios and widths of carbon nanotubes and fibers
    S. Vollebregt; R. Ishihara; F.D. Tichelaar; Y. Hou; C.I.M. Beenakker;
    Carbon,
    Volume 50, Issue 10, pp. 3542-3554, Aug. 2012. DOI 10.1016/j.carbon.2012.03.026.

  159. Integrating carbon nanotubes as vias in a monolithic 3DIC process
    S. Vollebregt; R. Ishihara; A.N. Chiaramonti; J. van der Cingel; C.I.M. Beenakker;
    In Proc. International Conference on Solid State Devices and Materials (SSDM 2012),
    Kyoto, Japan, pp. 1170-1171, Sep 2012.

  160. Electrical characterization of carbon nanotube vertical interconnects with different lengths and widths
    S. Vollebregt; R. Ishihara; F.D. Tichelaar; J. van der Cingel; C.I.M. Beenakker;
    In IEEE International Interconnect Technology Conference (IITC 2012),
    San Jose, CA, USA, pp. 1-3, Jun. 2012. DOI 10.1109/IITC.2012.6251578.

  161. Low-temperature bottom-up integration of carbon nanotubes for vertical interconnects in monolithic 3D integrated circuits
    S. Vollebregt; R. Ishihara; J. van der Cingel; C.I.M. Beenakker;
    In 3rd IEEE International 3D Systems Integration Conference (3DIC 2011),
    Osaka, Japan, Jan. 2012. DOI 10.1109/3DIC.2012.6262989.

  162. Multilayer conformal coating of highly dense Multi-Walled Carbon Nanotubes bundles
    G. Fiorentino; S. Vollebregt; R. Ishihara; P.M. Sarro;
    In 2012 12th IEEE Conference on Nanotechnology (IEEE-NANO),
    Birmingham, UK, Aug. 2012. ISBN 978-1-4673-2198-3; DOI 10.1109/NANO.2012.6322054.

  163. Contact resistance of low-temperature carbon nanotube vertical interconnects
    S. Vollebregt; A.N. Chiaramonti; R. Ishihara; H. Schellevis; C.I.M. Beenakker;
    In K. Jiang (Ed.), 2012 12th IEEE Conference on Nanotechnology (IEEE-NANO),
    Birmingham, UK, Aug. 2012. ISBN 978-1-4673-2198-3; DOI 10.1109/NANO.2012.6321985.

  164. Electrical characterisation of low temperature aligned carbon nanotubes for vertical interconnects
    S. Vollebregt; R. Ishihara; J. van der Cingel; H. Schellevis; C.I.M. Beenakker;
    In Proc. ICT.OPEN: Micro technology and micro devices (SAFE 2011),
    Veldhoven, The Netherlands, Nov. 2011.

  165. Use of multi-wall carbon nanotubes as an absorber in a thermal detector
    H. Wu; S. Vollebregt; A. Emadi; G. de Graaf; R. R. IshiharaF. Wolffenbuttel;
    In C. Tsamis; G. Kaltas (Ed.), Proc. Eurosensors XXV,
    Athens, Greece, Procedia Engineering, pp. 523-526, Sep. 2011. DOI 10.1016/j.proeng.2011.12.130.

  166. Integrating low temperature aligned carbon nanotubes as vertical interconnects in Si technology
    S. Vollebregt; R. Ishihara; J. J. Derakhshandeh. van der Cingel; H. Schellevis; C.I.M. Beenakker;
    In Proc. 11th IEEE International Conference on Nanotechnology (NANO 2011),
    Portland, OR, pp. 985-990, Aug. 2011.

  167. Patterned aligned carbon nanotubes for vertical interconnects in 3D integrated TFT circuits
    S. Vollebregt; R. Ishihara; J. J. Derakhshandeh. van der Cingel; W.H.A. Wien; C.I.M. Beenakker;
    In 7th International Thin-Film Transistor Conference,
    Cambridge, United Kingdom, Mar. 2011.

  168. Growth of high density aligned carbon nanotubes using palladium as catalyst
    S. Vollebregt; J. Derakhshandeh; R. Ishihara; M. Y. Wu; C. I. M. Beenakker;
    Journal of Electronic Materials,
    Volume 39, Issue 4, pp. 371-375, 2010.

  169. Patterned growth of carbon nanotubes for vertical interconnect in 3D integrated circuits
    S. Vollebregt; R. Ishihara; J. Derakhshandeh; W. Wien; J. van der Cingel; C.E.M. Beenakker;
    In Proc. of SAFE 2010,
    pp. 184-187, 2010.

  170. Investigating Low Temperature High Density Aligned Carbon Nanotube and Nanofilament Growth using Palladium as Catalyst
    S. Vollebregt; J. Derakhshandeh; M.Y. Wu; R. Ishihara; C.I.M. Beenakker;
    In SAFE 2009,
    STW, pp. 125-128, 2009.

  171. Growth of high density aligned carbon nanotubes using palladium as catalyst
    S. Vollebregt; J. Derakhshandeh; R. Ishihara; C.I.M. Beenakker;
    In Proceedings of Electronic Material conference 2009,
    USA, 2009.

BibTeX support

Last updated: 19 Dec 2023